The profile you are now visiting: Vicente Miquel. Go back to Past records to show all talks or carry out a new search.

Talks by Vicente Miquel

On the mean curvature flow associated to a density

Universidad de Valencia

I’ll describe what is the mean curvature flow associated to a density and will give some account of my recent work with F. Viñado-Lereu.
First, in $\mathbb{R}^n$ with a density $e^\psi$, we study the mean curvature flow associated to the density ($\psi$MCF) of a hypersurface. The main results of this part of the talk concern with the description of the evolution under $\psi$MCF of a closed embedded curve in the plane with a radial density, and with a statement of subconvergence to a $\psi$-minimal closed curve in a surface under some general circumstances.
Second, we define Type I singularities for the $\psi$MCF and describe the blow-up at singular time of these singularities. Special attention is paid to the case where the singularity come from the part of the $\psi$-curvature due to the density. We describe a family of curves whose evolution under $\psi$MCF (in a Riemannian surface of non-negative curvature with a density which is singular at a geodesic of the surface) produces only type I singularities and study the limits of their blow-ups.
These results and their proofs are collected in:
Miquel, Vicente; Viñado-Lereu, Francisco; "The curve shortening problem associated to a density". Calc. Var. Partial Differential Equations 55 (2016), no. 3, 55:61 and
Miquel, Vicente; Viñado-Lereu, Francisco; "Type I singularities in the curve shortening flow associated to a density” arXiv:1607.08402

Tres observaciones en Análisis Geométrico

Universidad de Valencia

Primera observación: el primer valor propio de Dirichlet de un tubo alrededor de una subvariedad compleja de $\mathbb{C}P^n$ está acotado por una función del radio y de los grados de los polinomios que definen el centro del tubo. (Trabajo conjunto con M.Carmen Domingo-Juan). Segunda: existen ejemplos de superficies “mean-convex” que, al evolucionar por el flujo por la curvatura media conservando el volumen dejan de ser “mean-convex”. (Trabajo conjunto con Esther Cabezas-Rivas). Tercera: se dan ejemplos de superficies lagrangianas de $\mathbb{C}^2$ que, por el flujo por la curvatura media, se contraen a un punto con la forma de un toro de Clifford. (Trabajo conjunto con Ildefonso Castro y Ana Lerma).

On the role of Killing vector fields for a good behavior of mean curvature flow

Universidad de Valencia

We shall indicate the rough idea that a hypersurface transversal to a Killing vector field that flows by MCF remains transverse to it and will study this evolution in some warped products of the real line times a riemannian manifold. This talk contains joint work with A. Borisenko.

Volume preserving mean curvature flow of revolution hypersurface with boundary moving freely on parallel or equidistant hypersurfaces

Universidad de Valencia

Mean curvature flow of graphs in warped products

Universidad de Valencia

Let $M$ be a complete Riemannian manifold which either is compact or has a pole, and let $varphi$ be a positive smooth function on $M$. In the warped product $M times_varphi mathbb R$, we study the flow by the mean curvature of a locally Lipschitz continuous graph on $M$ and prove that the flow exists for all time and that the evolving hypersurface is $C^infty$ for $t>0$ and is a graph for all $t$. Moreover, under certain conditions, the flow has a well defined limit.
Joint work with A. Borisenko

Seminario de Matemáticas. 1ª Planta

Ideas generales de la demostración de la conjetura de geometrización de Thurston según Hamilton y Perelman

Universidad de Valencia

M-21

Volumen de tubos de seccion no circular

Universidad de Valencia

M-7

Tubos kaehlerianos que son extremales para el primer valor propio de Dirichlet

Universidad de Valencia

M-23

Vicente Miquel

Universidad de Valencia (España)

Number of talks
8
Number of visits
4
Last visit
Personal website

If you found any mistake, please Contact us in order to correct it.