The profile you are now visiting: Esther Cabezas-Rivas. Go back to Past records to show all talks or carry out a new search.

Talks by Esther Cabezas-Rivas

A generalization of Gromov's almost flat manifold theorem

Universität Münster

Almost flat manifolds are the solutions of bounded size perturbations of the equation $\mathrm{Sec} = 0$ ($\mathrm{Sec}$ is the sectional curvature). In a celebrated theorem, Gromov proved that the presence of an almost flat metric implies a precise topological description of the underlying manifold.

During this talk we will explain how, under lower sectional curvature bounds, to impose an $L_1$-pinching condition on the curvature is surprisingly rigid, leading indeed to the same conclusion as in Gromov's theorem under more relaxed curvature conditions (in particular, so weak that we are not allowed to use Ricci flow in the proof). We will describe which alternative techniques lead us to a successful proof, ans this will be sketched in detail. This is a joint work with B. Wilking.

Sala de Conferencias - IEMath-GR

Lecture included in Geometry Day

Una generalización del teorema de Gromov sobre variedades casi llanas

Universität Münster

Las variedades casi llanas son soluciones de perturbaciones de tamaño controlado de la ecuación $\mathrm{Sec}=0$ ($\mathrm{Sec}$ es la curvatura seccional). En un famoso e influyente teorema, Gromov demostró que la presencia de una métrica casi llana implica una descripción topológica precisa de la variedad subyacente. Durante la charla, se presentará una generalización de dicho teorema obtenida relajando las hipótesis sobre la curvatura. Se trata de un trabajo conjunto con B. Wilking.

Esther Cabezas-Rivas

Universität Münster (España)

Number of talks
2

If you found any mistake, please Contact us in order to correct it.