Rigidity of the grim reaper cylinder as a collapsed self-translating soliton
Niels Martin Moller University of Copenhagen
Mean curvature flow self-translating solitons are minimal hypersurfaces for a certain incomplete conformal background metric, and are among the possible singularity models for the flow. In the collapsed case, they are confined to slabs in space. The simplest non-trivial such example, the grim reaper curve $\Gamma$ in $\mathbb{R}^2$, has been known since 1956, as an explicit ODE-solution, which also easily gave its uniqueness. We consider here the case of surfaces, where the rigidity result for $\Gamma\times\mathbb{R}$ that we'll show this: The grim reaper cylinder is the unique (up to rigid motions) finite entropy unit speed self-translating surface which has width equal to $\pi$ and is bounded from below. (Joint w/ Impera \& Rimoldi.) Time permitting, we'll also discuss recent uniqueness results in the collapsed simply-connected low entropy case (joint w/ Gama \& Martín), using Morse theory and nodal set techniques, which extend Chini's classification.