Large conformal metrics with prescribed gauss and geodesic curvatures
Rayssa Caju Pontificia Universidad Católica de Chile
In this talk, our goal is to discuss the existence of at least two distinct conformal metrics with prescribed gaussian curvature and geodesic curvature respectively, $K_{g}= f + \lambda$ and $k_{g}= h + \mu$, where f and h are nonpositive functions and \lambda and \mu are positive constants. Utilizing Struwe's monotonicity trick, we investigate the blowup behavior of the solutions and establish a non-existence result for the limiting PDE, eliminating one of the potential blow-up profiles.