¿Buscas información acerca de una conferencia o evento? En esta sección podrás consultar todas las actividades pasadas del seminario así cómo buscar información específica acerca de un visitante concreto o reunión.

Buscar
¿Cuándo? Sin restricciones
Año
Años: Desde hasta

Orden
Tipo Conferencia:


Evento:

YouTube Visite nuestro canal

Conferencias

Some structure theorems for Weingarten surfaces

Università degli Studi dell'Aquila

Let $M$ be a properly embedded, connected, complete surface in $\mathbb{R}^3$ with boundary a convex planar curve $C$, satisfying an elliptic equation $H=f(H^2-K)$, where $H$ and $K$ are the mean and the Gauss curvature respectively – which we will refer to as Weingarten equation. In this talk, we discuss how the symmetries of $C$ may induce symmetries of the whole $M$. When $M$ is contained in one of the two halfspaces determined by $C$, we give sufficient conditions for $M$ to inherit the symmetries of $C$. In particular, when $M$ is vertically cylindrically bounded, we get that $M$ is rotational if $C$ is a circle. In the case in which the Weingarten equation is linear, we give a sufficient condition for such a surface to be contained in a halfspace. Both results are generalizations of results of Rosenberg and Sa Earp, for constant mean curvature surfaces, to the Weingarten setting. In particular, our results also recover and generalize the constant mean curvature case.

Seminaria 2 (IMAG)

Zoll manifolds with boundary

Universidade de Sao Paulo

Zoll manifolds are Riemannian manifolds all of whose geodesics are closed and have the same length. Beyond the round sphere, nontrivial examples were constructed by Funk and Guillemin, initiating a rich line of research. In this talk, I introduce a free-boundary analogue of this notion. A compact Riemannian manifold with boundary is said to be Zoll with boundary if every geodesic issuing orthogonally from the boundary returns orthogonally and is nowhere tangent to it. I will show that such manifolds exhibit strong rigidity: all free-boundary geodesics have the same length and share the same Morse index. Using Morse index theory and algebraic topology, we obtain a complete geometric and topological classification. In particular, when the boundary is connected, the manifold is a tubular neighborhood of a closed embedded submanifold (the “soul”), and the boundary fibers over the soul either as a sphere bundle or as a nontrivial two-fold covering. This is joint work with Paolo Piccione and Roney Santos.

Seminario 1 (IMAG)

Collapsed translators with entropy 2

Dto. Geometría y Topología. IMAG. UGR

In this talk, I will describe a classification result for translating solitons of the mean curvature flow under two natural quantitative/topological assumptions: finite genus and entropy equal to 2. Roughly speaking, these hypotheses place the translator at the borderline between the simplest nontrivial singularity models and genuinely higher–complexity behavior: finite genus controls the global topology, while the entropy bound rigidifies the possible asymptotic geometry and rules out many exotic configurations. I will explain how one combines geometric measure theory and PDE tools for the translator equation to extract strong structural information from the entropy constraint, leading to a precise description of all such examples. Along the way, I will discuss the role of blow-down and compactness arguments, how the entropy pinching interacts with curvature and topology, and what the result says about the landscape of low-entropy translators. This is joint work with E. S. Gama and N. M. Møller.

A-23 - Facultad de Ciencias

Minimal surfaces with two ends and their total curvature

Hiroshima University

We prove the existence of complete minimal surfaces, in Euclidean 3-space, of arbitrary positive genus and least total absolute curvature that have precisely two ends: a catenoidal end and an Enneper-type end. This talk is based on a joint work with Rivu Bardhan, Indranil Biswas, and Pradip Kumar. https://arxiv.org/abs/2509.03925

Seminario 1 (IMAG)

Eventos

Congreso Bienal de la RSME 2026

Alicante (Spain)

» 
El Comité Organizador del Congreso Bienal de la Real Sociedad Matemática Española 2026 os invita a participar en dicho encuentro que se celebrará en el campus de la Universidad de Alicante (UA) del 19 al 23 de enero de 2026. Es la primera vez que la provincia de Alicante y la Comunidad Valenciana acoge este importante evento. En este congreso Bienal RSME 2026 se darán a conocer los últimos avances en investigación en diferentes áreas de matemáticas y se facilitará el establecimiento de lazos de colaboración entre distintos grupos de investigación de nuestro país. Además de las habituales conferencias plenarias está prevista la celebración de sesiones especiales y exposición de pósteres. La asistencia al congreso permitirá disfrutar además de variadas actividades programadas en el propio campus, pero también en Alicante y alrededores. Por todo ello os animamos a presentar vuestros resultados más novedosos y a participar en este encuentro. ¡Os esperamos en Alicante! Un cordial saludo.

This activity is supported by the research projects EUR2024.153556, PID2023-150727NB-I00, , PID2023-151060NB-I00, PID2022-142559NB-I00, CNS2022-135390 CONSOLIDACION2022, PID2020-118137GB-I00, PID2020-117868GB-I00, PID2020-116126GB-I00.