Estás viendo actualmente el perfil de Esko Heinonem. Vuelve al Historial para mostrar todas las conferencias o realiza una nueva búsqueda

Conferencias impartidas por Esko Heinonem

Asymptotic Dirichlet problems for the mean curvature operator

Universidad de Helsinki

In \(R^n\) (\(n\) at most 7) the famous Bernstein's theorem states that every entire solution to the minimal graph equation must be affine. Moreover, entire positive solutions in \(R^n\) are constant in every dimension by a result due to Bombieri, De Giorgi and Miranda. If the underlying space is changed from \(R^n\) to a negatively curved Riemannian manifold, the situation is completely different. Namely, if the sectional curvature of \(M\) satisfies suitable bounds, then \(M\) possess a wealth of solutions.
One way to study the existence of entire, continuous, bounded and non-constant solutions, is to solve the asymptotic Dirichlet problem on Cartan-Hadamard manifolds. In this talk I will discuss about recent existence results for minimal graphs and f-minimal graphs. The talk is based on joint works with Jean-Baptiste Casteras and Ilkka Holopainen.

Seminario 2ª Planta, IEMATH

Esko Heinonem

Universidad de Helsinki

Conferencias impartidas
Visitas al departamento
Última visita
País de origen

¿Los datos no son correctos? Por favor, contacta con nosotros para solucionarlo.