The profile you are now visiting: Antonio Ros. Go back to Past records to show all talks or carry out a new search.

Talks by Antonio Ros

Un problema elíptico sobredeterminado

Universidad de Granada

Discutiremos la geometría de los dominios $\Omega$ en el plano tales que, bajo diferentes hipótesis, admiten una solución del problema clásico sobreterminado $\Delta u + f(u) = 0$, $u>0$ en $\Omega$, $u=0$, $\partial u/\partial ν=c$ en $\partial\Omega$. Este es un trabajo conjunto con P. Sicbaldi.

The isoperimetric problem and The Willmore conjecture: the symmetric case

Universidad de Granada

Although the recent complete solution of the Willmore conjecture depends on the min-max theory of minimal surfaces, some partial results can be obtained by using the isoperimetric problem on 3-manifolds of positive Ricci curvature and, in particular, on the real projective space. Using this tool, we will present a proof of the Willmore conjecture for antipodal invariant tori in the 3-sphere and for the case of tori with a central symmetry in Euclidean 3-space.

La Geometría de un problema elíptico sobredeterminado

Universidad de Granada

Dado un dominio plano y una funcion $f$, consideramos la ecuación $\Delta u + f(u) =0$, $u>0$ en $\Omega$ con condiciones de Dirichlet y Neumann en la frontera, simultáneamente, $u=0$, $u_\nu=c$ en $\partial\Omega$. Si el dominio es acotado, Serrin demuestra que $\Omega$ es un disco y $u$ es radial. Para dominios no acotados hay muchas cuestiones abiertas y presentamos algunos resultados obtenidos con Pieralberto Sicbaldi y relacionados con la teoría de superficies de curvatura media constante: dominios con topología finita, teorema del semiplano, etc.

Seminario Matemáticas. 1ª planta

Stability and area minimizing surfaces

Universidad de Granada

We review some stability and area minimizing properties for minimal and constant mean curvature surfaces in the euclidean 3-space. We will present the case of complete surfaces, free boundary and the prescribed symmetries one. In particular, we will prove that area minimizing surfaces in some quotients of $\mathbb{R}^3$ are planar.

Area minimizing surfaces in flat tori

Universidad de Granada

A surface $S$ in a complete $3$-manifold $M$ is area-minimizing mod $2$ if it has least area among all surfaces, orientable or nonorientable in the same homology class. These surfaces present a rich and interesting geometry, even in flat or positively curved $3$-manifolds. For instance, if $M$ is flat, Fischer-Colbrie and Schoen, Do Carmo and Peng, and Pogorelov proved that complete two-sided stable minimal surfaces are flat, but Ross proved that some nonorientable quotient of the classic Schwarz P and D surfaces are estable, and we proved that an area minimizing surface in $\mathbb{R}^2\times S^1$ is either planar or a quotient of the Helicoid. We will review some results about this problem and we will prove that area minimizing surfaces in flat $3$-tori are planar.

Estabilidad de superficies mínimas y de superficies con curvatura media constante

Universidad de Granada

M-23

El problema isoperimétrico

Universidad de Granada

M-7

Superficies minimales completas de curvatura total finita

Universidad de Granada

M-7

La conjetura de Willmore para toros simétricos

Universidad de Granada

M-21

Antonio Ros

Universidad de Granada (España)

Number of talks
9
Personal website

If you found any mistake, please Contact us in order to correct it.