Real hypersurfaces with pseudo-Ricci-Bourguignon soliton in the complex two-plane Grassmannians
Changhwa Woo Pukyong National University
In this talk, we investigate a pseudo-Ricci-Bourguignon soliton on real hypersurfaces in the complex two-plane Grassmannian $G_2({\mathbb C}^{m+2})$. By using pseudo-anti commuting Ricci tensor, we give a complete classification of Hopf pseudo-Ricci-Bourguignon soliton real hypersurfaces in $G_2({\mathbb C}^{m+2})$ . Moreover, we have proved that there exists a non-trivial classification of gradient pseudo-Ricci-Bourguignon soliton $(M, {\xi}, {\eta}, {\Omega}, {\theta}, {\gamma}, g)$ on real hypersurfaces with isometric Reeb flow in the complex two-plane Grassmannian $G_2({\mathbb C}^{m+2})$. In the class of contact hypersurface in $G_2({\mathbb C}^{m+2})$, we prove that there does not exist a gradient pseudo-Ricci-Bourguignon soliton in $G_2({\mathbb C}^{m+2})$