Properly embedded area minimizing surfaces in hyperbolic three space
Francisco Martín Serrano Universidad de Granada
We prove that, given S an open oriented surface, then there exists a complete, proper, area minimizing embedding $f:S→\mathbb{H}^3$. The main tool in the proof of the above result is a sort of bridge principle at infinity for properly embedded area minimizing surfaces in hyperbolic three space.
This is a joint work with Brian White.