Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 853
Determinar justificadamente todos los pares de números enteros $(x,y)$ que verifican la ecuación \[x^2-y^4=2009.\]
pistasolución 1info
Pista. Factoriza $x^2-y^4$ como una diferencia de cuadrados.
Solución. Por simplicidad, podemos suponer que $x,y\geq 0$ cambiándolos de signo si fuera necesario. Es bastante evidente la factorización $x^2-y^4=(x-y^2)(x+y^2)$ como diferencia de cuadrados, por lo que, para cada divisor positivo $d$ de $2009$ tenemos una potencial solución con $x-y^2=d$ y $x+y^2=\frac{2009}{d}$. Como $2009$ es impar, las soluciones de este sistema \[x=\frac{\frac{2009}{d}+d}{2},\qquad y^2=\frac{\frac{2009}{d}-d}{2}\] son números enteros, pero es necesario comprobar para qué elecciones de $d$ el segundo término $\frac{\frac{2009}{d}-d}{2}$ es un cuadrado perfecto. Para que sea positivo, además tendremos que $0\lt d\leq\sqrt{2009}\lt 45$, lo que nos deja solamente tres posibilidades:
  • $d=1$ nos da $y^2=1004$, que no es un cuadrado perfecto.
  • $d=7$ nos da $y^2=140$, que no es un cuadrado perfecto.
  • $d=41$ nos da $y^2=4$, luego $y=2$ y $x=45$.
Finalmente, teniendo en cuenta que habíamos supuesto que las soluciones son positivas, deducimos que las soluciones enteras son $(-45,-2)$, $(-45,2)$, $(45,-2)$ y $(45,2)$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 844
Probar que para todo entero positivo $n$, el número $n^{19}-n^7$ es divisible por $30$.
pistasolución 1info
Pista. Demostrar que es divisible por $2$, por $3$ y por $5$.
Solución. Podemos factorizar \[n^{19}-n^7=n^7(n^{12}-1)=n\cdot n^6\,(n^6+1)(n^6-1).\] Observamos que $n^6-1$, $n^6$ y $n^6+1$ son tres enteros consecutivos, luego habrá uno de ellos múltiplo de $2$ y también habrá uno múltiplo de $3$. Por otro lado, si $n$ es múltiplo de $5$, el número también será múltiplo de $5$ puesto que tiene un factor $n$. Si $n$ no es múltiplo de $5$, entonces $n^2$ es congruente con $1$ o $4$ módulo $5$, luego $n^6=(n^2)^3$ congruente con $1^3=1$ (en cuyo caso $n^6-1$ es múltiplo de $5$) o con $4^3=64\equiv 4$ (en cuyo caso $n^6+1$ es múltiplo de $5$).

En todos los casos, hemos probado que $n^{19}-n^7$ es múltiplo de $2$, de $3$ y de $5$, luego es múltiplo de $30$.

Nota. El polinomio original se puede seguir factorizando, aunque no aporta nada esencial a la discusión. Una factorización completa sobre los enteros es: \[n^{19}-n^7=n^7(n-1)(n+1)(n^2+1)(n^2-n+1)(n^2+n+1)(n^4-n^2+1)\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 842
La igualdad $2008=1111+444+222+99+77+55$ es un ejemplo de descomposición del número 2008 como suma de números distintos de más de una cifra cuyas representaciones (en el sistema decimal) utilizan un solo dígito.
  1. Encontrar una descomposición de este tipo para el número $2009$.
  2. Determinar para el número $2009$ todas las posibles descomposiciones de este tipo que utilizan el menor número posible de sumandos (el orden de los sumandos no se tiene en cuenta).
pistasolución 1info
Pista. Piensa qué pasa módulo $11$ para llegar a que $777$ tiene que ser uno de los sumandos.
Solución. Probando con los sumandos más grandes posibles (para intentar minimizar el número de sumandos), llegamos a la siguiente descomposición: \[2009=1111+777+99+22.\] Si ahora trabajamos módulo $11$, observamos que los sumandos de dos y cuatro cifras son congruentes con $0$, mientras que los sumandos de tres cifras son congruentes con la cifra. Como $2009\equiv 7\ (\text{mod }11)$, las cifras de los números de tres cifras que usemos tienen que sumar $7$ o $18$ (si sumaran $25$ o más, nos pasaríamos ya que $25\cdot 111\gt 2009$). Si suman $18$, entonces tendríamos $18\cdot 111=1998$, que nos dejaría $9$ unidades de margen y no pueden obtenerse con otros sumandos puesto que no está permitido usar sumandos de una cifra. Tenemos así que $777$ tiene que ser el único sumando de tres cifras en cualquier descomposición que hagamos de $2009$ con el menor número de sumandos (ya que podríamos descomponer, por ejemplo, $777=444+333$). También tiene que ser necesariamente $1111$ otro sumando ya que no podemos obtener $2009-777=1232$ si sumamos solamente números de dos cifras distintos (tenemos que $11+22+\ldots+99=495\lt 1232$). Teniendo ahora en cuenta que $2009-777-1111=121$ tiene que expresarse como suma de (dos) números de dos cifras, obtenemos fácilmente las únicas cuatro descomposiciones que usan cuatro sumandos: \begin{align*} 2009&=1111+777+99+22,&2009&=1111+777+88+33,\\ 2009&=1111+777+77+44,&2009&=1111+777+66+55. \end{align*} Cualquier otra descomposición se obtiene reordenando sumandos o bien tienen al menos cinco sumandos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 833
Sea $m$ un entero positivo. Demuestra que no existen números primos de la forma $2^{5m}+2^m+1$.
pistasolución 1info
Pista. Factoriza el polinomio $x^5+x+1$ como producto de un polinomio de grado $3$ y otro de grado $2$.
Solución. El polinomio $x^5+x+1$ no tiene raíces enteras pero puede factorizarse como producto de un polinomio de grado $3$ por otro de grado $2$. Para ello, pongamos \begin{align*} x^5+x+1&=(x^3+ax^2+bx+c)(x^2+ex+f)\\ &=x^5+(a+e)x^4+(b+ae+f)x^3+(c+be+af)x^2+(ce+bf)x+cf. \end{align*} Igualando coeficientes, tenemos en primer lugar que $cf=1$, luego pondremos $c=f=1$ ya que buscamos coeficientes enteros (si no nos sale, deberíamos probar con la otra opción $c=f=-1$). Entonces, nos queda que $a+e=0$, $b+ae=-1$, $a+be=-1$ y $e+b=1$. Podemos sustituir entonces $a=-e$ y $b=1-e$ en $b+ae=-1$ para llegar a que $1-e-e^2=-1$, ecuación que tiene soluciones $e=1$ y $e=-2$. Con $e=1$, tenemos $a=-1$ y $b=0$, que cumplen la ecuación restante ($a+be=-1$) y nos dan la factorización deseada: \[x^5+x+1=(x^3-x^2+1)(x^2+x+1).\] Esto nos dice que el número original se puede factorizar (con $x=2^m$) como \[2^{5m}+2^m+1=(2^{3m}-2^{2m}+1)(2^{2m}+2^{m}+1).\] Está claro que $2^{3m}-2^{2m}\gt 0$ (puesto que $m\gt 0$), luego el primer factor no es $\pm 1$. Tampoco lo es el segundo (ya que es mayor que $1$), luego el número $2^{5m}+2^m+1$ es compuesto para todo entero $m\geq 1$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 830
Demuestra que $5555^{2222}+2222^{5555}$ es múltiplo de $7$.
pistasolución 1info
Pista. El enunciado equivale a que $4^{5555}+3^{2222}$ es múltiplo de $7$. Reduce módulo $7$ encontrando potencias de $4$ y $3$ que sean congruentes con $1$.
Solución. Comencemos con el segundo sumando. Como $2222\equiv 3\ (\text{mod }7)$, tenemos que $2222^{5555}\equiv 3^{5555}\ (\text{mod }7)$. Ahora bien, para simplificar el exponente que, trabajando módulo $7$, tenemos que $3^1\equiv 3$, $3^2\equiv 2$, $3^3\equiv 6$, $3^4\equiv 4$, $3^5\equiv 5$ y $3^6\equiv 1$. Hemos llegado a una potencia que es congruente con $1$. Ahora si dividimos $5555$ entre $6$ obtenemos que $5555=925\cdot 6+5$, luego \[2222^{5555}\equiv 3^{5555}=(3^6)^{925}\cdot 3^5\equiv 1^{925}\cdot 5\equiv 5\ (\text{mod }7).\]

De la misma manera, se comprueba que $5555\equiv 4\ (\text{mod }7)$, luego $5555^{222}\equiv 4^{2222}\ (\text{mod }7)$. Tenemos que $4^1\equiv 4$, $4^2\equiv 2$ y $4^3\equiv 1$ módulo $7$, y hacemos la división euclídea de $2222$ entre $3$, que nos da $2222=740\cdot 3+2$. Por tanto, \[5555^{2222}\equiv 4^{2222}=(4^3)^{740}\cdot 4^2\equiv 1^{740}\cdot 2\equiv 2\ (\text{mod }7).\] Esto nos da finalmente el resultado deseado: \[2222^{5555}+5555^{2222}\equiv 5+2\equiv 0\ (\text{mod }7).\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre