Estás viendo actualmente el perfil de Martin Traizet. Vuelve al Historial para mostrar todas las conferencias o realiza una nueva búsqueda
I will talk about the existence of higher genus helicoids in $\mathbb{S}^2\times \mathbb{R}$ and $\mathbb{R}^3$ . This is a joint work with David Hoffman and Brian White.
Gluing is a well established procedure to construct examples of minimal surfaces. In the past year I have been interested in developping tools to glue infinitely many minimal surfaces together. In this talk I will describe several families of minimal surfaces of theoretical interest that were constructed along the way. Then I will explain some of the technicalities involved in this kind of project, including a connection with some discrete analysis problems on graphs.
El autor, en colaboración con Laurent Mazet, presenta la construcción de una superficie minimal embebida en el producto llano $\mathbb{R}^2\times\mathbb{S}^1$ que es casi-periódica pero no periódica.
¿Los datos no son correctos? Por favor, contacta con nosotros para solucionarlo.
This activity is supported by the research projects EUR2024.153556, PID2023-150727NB-I00, PID2022-142559NB-I00, CNS2022-135390 CONSOLIDACION2022, PID2020-118137GB-I00, PID2020-117868GB-I00, PID2020-116126GB-I00.