Detalles de Evento
Día: 20 de Noviembre de 2020
Hora: 10:30 - 13:00
Lugar: Videoconferencia Sala TESLA de UGR,
Acceso Sala Virtual
Contraseña de la reunión: 359753
(Es obligatorio que todos los participantes accedan con este enlace, no
use otro método de acceso.
Si necesita ayuda para hacer pruebas de sus dispositivos, use la
siguiente sala de videoconferencia colaborativa como la que usted ha
reservado:
Acceso Sala Virtual de prueba )
Ponente: José Miguel Manzano (Universidad de Jaén, España)
Título:Horizontal Delaunay surfaces with constant mean curvature in product spaces Resumen:In this talk, we will describe the 1-parameter family of horizontal Delaunay surfaces in \(\mathbb{S}^2\times\mathbb{R}\) \(\mathbb{H}^2\times\mathbb{R}\) with supercritical constant mean curvature. These surfaces are not equivariant but singly periodic, and they lie at bounded distance from a horizontal geodesic. We will show that horizontal unduloids are properly embedded surfaces in \(\mathbb H^2\times\mathbb{R}\). We also describe the first non-trivial examples of embedded constant mean curvature tori in (\mathbb{S}^2\times\mathbb{R}\) which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. They have constant mean curvature \(H>\frac{1}{2}\). Finally, we prove that there are no properly immersed surface with critical or subcritical constant mean curvature at bounded distance from a horizontal geodesic in \(\mathbb{H}^2\times\mathbb{R}\) .
Título:Horizontal Delaunay surfaces with constant mean curvature in product spaces Resumen:In this talk, we will describe the 1-parameter family of horizontal Delaunay surfaces in \(\mathbb{S}^2\times\mathbb{R}\) \(\mathbb{H}^2\times\mathbb{R}\) with supercritical constant mean curvature. These surfaces are not equivariant but singly periodic, and they lie at bounded distance from a horizontal geodesic. We will show that horizontal unduloids are properly embedded surfaces in \(\mathbb H^2\times\mathbb{R}\). We also describe the first non-trivial examples of embedded constant mean curvature tori in (\mathbb{S}^2\times\mathbb{R}\) which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. They have constant mean curvature \(H>\frac{1}{2}\). Finally, we prove that there are no properly immersed surface with critical or subcritical constant mean curvature at bounded distance from a horizontal geodesic in \(\mathbb{H}^2\times\mathbb{R}\) .