Detalles de Evento
Día: 16 de octubre de 2020
Hora: 13:00 - 14:00
Lugar: Videoconferencia Sala TESLA de UGR, https://oficinavirtual.ugr.es/redes/SOR/SALVEUGR/accesosala.jsp?IDSALA=22969000
Contraseña de la reunión: 576333
También puede seguir la conferencia por YouTube:
https://www.youtube.com/watch?v=odaTmuayV7o
Ponente: Jorge Lira (Universidad de Fortaleza, Brasil)
Título: Einstein type elliptic systems
Resumen: We will discuss a type of semi-linear systems of partial differential equations which are motivated by the conformal formulation of the Einstein constraint equations coupled with realistic physical fields on asymptotically flat manifolds. In particular, electromagnetic fields give rise to this kind of systems. In this context, under suitable conditions, we prove a general existence theorem for such systems, and, in particular, under smallness assumptions on the free parameters of the problem, we prove existence of far from CMC (near CMC) Yamabe positive (Yamabe non-positive) solutions for charged dust coupled to the Einstein equations, satisfying a trapped surface condition on the boundary. As a bypass, we prove a Helmholtz decomposition on asymptotically flat manifolds with boundary, which extends and clarifies previously known results.
Para más información, visitar https://wpd.ugr.es/~geometry/seminar/es
Canal YouTube "Geometry UGR": https://www.youtube.com/channel/UCwOSrb72T-8Vq0K88xqVctA
Hora: 13:00 - 14:00
Lugar: Videoconferencia Sala TESLA de UGR, https://oficinavirtual.ugr.es/redes/SOR/SALVEUGR/accesosala.jsp?IDSALA=22969000
Contraseña de la reunión: 576333
También puede seguir la conferencia por YouTube:
https://www.youtube.com/watch?v=odaTmuayV7o
Ponente: Jorge Lira (Universidad de Fortaleza, Brasil)
Título: Einstein type elliptic systems
Resumen: We will discuss a type of semi-linear systems of partial differential equations which are motivated by the conformal formulation of the Einstein constraint equations coupled with realistic physical fields on asymptotically flat manifolds. In particular, electromagnetic fields give rise to this kind of systems. In this context, under suitable conditions, we prove a general existence theorem for such systems, and, in particular, under smallness assumptions on the free parameters of the problem, we prove existence of far from CMC (near CMC) Yamabe positive (Yamabe non-positive) solutions for charged dust coupled to the Einstein equations, satisfying a trapped surface condition on the boundary. As a bypass, we prove a Helmholtz decomposition on asymptotically flat manifolds with boundary, which extends and clarifies previously known results.
Para más información, visitar https://wpd.ugr.es/~geometry/seminar/es
Canal YouTube "Geometry UGR": https://www.youtube.com/channel/UCwOSrb72T-8Vq0K88xqVctA