Detalles de Evento

Título: Escaping sets of almost periodic successor maps.

Conferenciante: Henrik Schließauf (University of Cologne, Germany)

In dynamical systems given by a map \(f:\mathbb{R}\times (0,\infty)\to\mathbb{R}\times (0,\infty)\), \((t_0,E_0)\mapsto(t_1,E_1)\), one is often interested in the set \(E = \{ (t_0,E_0) : \lim_{n \to \infty} E_n = \infty\}\), where \((t_n,E_n) = f^n(t_0,E_0)\). We show that for certain almost periodic (a.p.) maps \(f\), this escaping set \(E\) typically has Lebesgue measure zero. As important applications, the a.p.Fermi-Ulam ping-pong and Littlewood boundedness problem are discussed.

19 de febrero de 2020, 10:00, Seminario de la 1º planta del IEMath-GR