Event Details

  • Start: 7 November 2022 16:30
  • End: 7 November 2022 17:30
  • Categories: ,
  • Institution: Justus-Liebig-Universität Gießen
    Speaker: Martin Buhmann
    Where: Seminario 2


Ponente: Martin Buhmann.

Abstract: We study the \(l^1\)-summability of functions in the d-dimensional torus and so-called \(l^1\)-invariant functions. Those are functions on the torus whose Fourier coefficients depend only on the -norm of their indices. Such functions are characterized as divided differences that have \(cos \theta_1, . . . , cos \theta_d\) as knots.
It leads us to consider the d-dimensional Fourier series of uni-variate B-splines with respect to its knots, which turns out to enjoy a simple bi-orthogonality that can be used to obtain an orthogonal series of the B-spline function. (Joint work with Janin Jäger and Yuan Xu.)