Event Details
Título: A geometric inequality and its application
Conferenciante: Osamu Hatori (Niigata University, Japón)
Resumen: Let H be a Hilbert space. Suppose that ∥ · ∥ is a complete unitarily invariant uniform norm on B(H). We show the inequality $$ \| \log (a^{\frac{1}{2}}ba^{\frac{1}{2}}\| \leq \| \log \| + \| \log b\| $$ for every pair $$a,b \in B(\mathcal{H})^{-1}_+.$$ As an application of the inequality we study certain isometries on the positive cone of a C*-algebra.
Fecha: 6 de septiembre de 2018, 12:00 - 13:00
Lugar: Seminario 1, IEMath-GR
Conferenciante: Osamu Hatori (Niigata University, Japón)
Resumen: Let H be a Hilbert space. Suppose that ∥ · ∥ is a complete unitarily invariant uniform norm on B(H). We show the inequality $$ \| \log (a^{\frac{1}{2}}ba^{\frac{1}{2}}\| \leq \| \log \| + \| \log b\| $$ for every pair $$a,b \in B(\mathcal{H})^{-1}_+.$$ As an application of the inequality we study certain isometries on the positive cone of a C*-algebra.
Fecha: 6 de septiembre de 2018, 12:00 - 13:00
Lugar: Seminario 1, IEMath-GR