Event Details


Conferenciante: Manuel Pájaro Diéguez (Instituto de Investigaciones Marinas, CSIC)
Título: "Estudio de la convergencia asintótica de ecuaciones integro diferenciales usadas en el modelado de redes de regulación genética."
Fecha y hora: Martes 9 de mayo de 2017, 13:10
Lugar de encuentro: Seminario de la primera planta, IEMath-GR
Resumen:
Las redes de regulación genética están formadas por una serie de genes que se transcriben en ARN mensajero que a su vez se traduce en proteínas (dogma central de la biología molecular). Las proteínas producidas también pueden intervenir en la regulación de los genes activándolos o inhibiéndolos. Normalmente, estos sistemas tienen un comportamiento de naturaleza estocástica, debido sobre todo, al bajo número de copias en las especies que intervienen. Habitualmente se usan ecuaciones maestras para su modelado, que son un conjunto de ecuaciones diferenciales que describen la evolución temporal de la probabilidad de que cada especie esté en uno de los posibles estados (que pueden ser infinitos). Debido a la complejidad de su resolución surge la necesidad de utilizar algoritmos de simulaciones estocásticas con un alto coste computacional para obtener su solución. Otra alternativa es derivar modelos resolubles que aproximen las ecuaciones maestras como es el caso de las ecuaciones integro diferenciales (aproximación continua de las ecuaciones maestras). Estas ecuaciones describen la evolución temporal de la función de densidad de probabilidad de la cantidad de proteínas existentes en el sistema. Los modelos integro diferenciales admiten una solución estacionaria analítica para redes en las que solamente interviene un gen expresando un tipo de proteína (1D). Mientras que para casos más complejos, en los que están involucrados más de un gen expresando proteínas (nD), su solución se obtiene numéricamente. Finalmente, se realiza un estudio de su convergencia hacia el estado de equilibrio. En este sentido usando técnicas que entropía relativa, se ha llegado a probar matemáticamente que la convergencia de las ecuaciones integro diferenciales es exponencial en el caso 1D. Además, para el caso general n-dimensional hay evidencias numéricas de que esta propiedad se conserva.