Event Details
Título: Un problema elíptico no lineal con un segundo miembro singular que puede cambiar de signo
Impartida por: Salvador López (Universidad de Granada)
Resumen: En esta charla mostraré algunos resultados de existencia y unicidad de solución $u(x)$ de problemas de Dirichlet con términos de orden inferior dependientes del gradiente de $u$ y singulares en $u=0$. Veremos que cuando la no linealidad es 1-homogénea es posible probar resultados óptimos haciendo uso de teoría de valores propios no variacional. Hay que destacar que en las demostraciones se evita la transformación de Cole-Hopf, de manera que estas técnicas permiten trabajar con no linealidades que dependen de la variable $x$, o con dependencia no cuadrática en el gradiente.
Impartida por: Salvador López (Universidad de Granada)
Resumen: En esta charla mostraré algunos resultados de existencia y unicidad de solución $u(x)$ de problemas de Dirichlet con términos de orden inferior dependientes del gradiente de $u$ y singulares en $u=0$. Veremos que cuando la no linealidad es 1-homogénea es posible probar resultados óptimos haciendo uso de teoría de valores propios no variacional. Hay que destacar que en las demostraciones se evita la transformación de Cole-Hopf, de manera que estas técnicas permiten trabajar con no linealidades que dependen de la variable $x$, o con dependencia no cuadrática en el gradiente.