Event Details
Título: Uniqueness of complete maximal surfaces in a Lorentzian product $-\mathbb{R}\times M$
Impartido por Eraldo A. Lima JR, Departamento de Matemática, Universidade Federal do Ceará (Fortaleza, Brasil)
Impartido por Eraldo A. Lima JR, Departamento de Matemática, Universidade Federal do Ceará (Fortaleza, Brasil)
ABSTRACT: We will present several results for maximal surfaces in a Lorentzian product manifold $-\mathbb{R}\times M$. The main purpose is to characterize the slices as complete maximal surfaces satisfying a comparison between the growth of length of the gradient of the height function and norm of the shape operator and additional bound assumptions. Several Calabi-Bernstein results are also shown. Finally, examples of maximal surfaces in $-\mathbb{R}\times M$ are explained to emphasize the necessity of the assumptions.