Are you looking for information about a lecture or an event? Here you can find all the past activities as well as specific information about a visitor or event.

When? No restrictions
Years: From to

Type Talk:



Improper affine spheres and the Hessian one equation.

Universidad de Granada

The Hessian one equation and its complex resolution provides an important tool in the study of improper affine spheres. Conversely, the properties of these surfaces play an important role in the development of geometric methods for the study of their PDEs. We review some results of this good interplay and present our extension of the classical Ribaucour transformations to this subject. In particular, we construct new solutions and families of improper affine spheres, periodic in one variable, with any even number of complete embedded ends and singular set contained in a compact set. Also, we compare the Cauchy problem for the elliptic and non-elliptic Hessian equation, with some results about their admissible singularities, mainly, isolated singularities and singular curves with cuspidal edges and swallowtails.

Seminario 1ª planta, IEMath

Centroaffine ovaloids with Einstein metric

Technische Universität Berlín, Germany

We study centroaffine hyperovaloids with centroaffine Einstein metric. We prove that such a hyperovaloid must be a hyperellipsoid. This result answers a conjecture that was open for several decades.

Seminario 1ª planta, IEMath

Minimal Lagrangian isotropic immersions in indefinite complex space forms

LAMAV, Université de Valenciennes et du Hainaut Cambrésis,

I am interested in the study of minimal isotropic Lagrangian sub manifolds \(M^n\) (\(n>2\)) in indefinite complex space forms. It is known that the dimension of \(M^n\) must satisfy \(n=3r+2\), with r a positive integer, and for \(n<14\) there exists a classification for such submanifolds. In my work I have extended the result for an arbitrary dimension n. Therefore, I have determined all the possible dimensions of \(M^n\) and found all the components of the second fundamental form, according to the metric with which \(M^n\) is endowed in each case.

Seminario 2ª Planta, IEMath-GR

Oka Theory and Minimal Surfaces

Univerza v Ljubljani

Two of the most classical theorems in the theory of holomorphic functions are the Runge approximation theorem and the Weierstrass interpolation theorem. In higher dimensions these correspond to the Oka-Weil approximation theorem and the Cartan extension theorem. A complex manifold X is said to be an Oka manifold if these classical results, and some of their natural extensions, hold for holomorphic maps from any Stein manifold (in particular, from complex Euclidean spaces) to X. After a brief historical review, beginning with the classical Oka-Grauert theory and continuing with the seminal work of Gromov, I will describe some recent developments and future challenges in this field of complex geometry. In particular, I shall describe a recently discovered connection between Oka theory and the classical theory of minimal surfaces in Euclidean spaces.

Seminario 1ª Planta, IEMath-Gr

Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls

Univerza v Ljubljani

We present a construction of a complete proper holomorphic embedding from any strictly pseudoconvex domain with smooth boundary in \(\mathbb C^n\) into the unit ball of \(\mathbb C^N\), for \(N\) large enough.

Seminario 1ª Planta, IEMath-Gr

CR geometry of contact manifolds

Chonnam National University

For a contact manifold, we have two fundamental structures associated with the given contact form. One is a Riemannian structure and the other is a CR structure. In this talk, we study CR geometry, which preserves a transversal almost complex structure. Using the Tanaka-Webster connection as a canonical connection, we study it's curvature tensor, the Ricci tensors, and the Chern-Moser-Tanaka invariant. Then we examine their geometric properties.

Seminario 1ª planta, IEMath

Minimal hypersurfaces of least area

Université de Tours

In this talk, I will study closed embedded minimal hypersurfaces in Riemannian manifold that minimize area among such hypersurfaces : they exist and have index at most 1. I will apply this to minimal surfaces in hyperbolic 3-manifolds.

Seminario 1ª planta, IEMath

Análisis Geométrico de la Distancia Lorentziana en Subvariedades Marginalmente Atrapadas

Universidad de Murcia

Considérese sobre un espacio-tiempo \(M\) la función distancia lorentziana desde un punto \(p\in M\) o desde una hipersuperficie espacial acronal \(S\subset M\). Bajo ciertas condiciones de causalidad, dichas funciones son diferenciables al menos en un futuro cronológico suficientemente cercano del punto \(p\) o de la hipersuperficie \(S\), de manera que se les pueden aplicar las técnicas clásicas del análisis geométrico. En esta conferencia estudiaremos la función distancia lorentziana restringida a una subvariedad marginalmente atrapada de \(M\) y, bajo ciertas hipótesis en la curvatura del espaciotiempo ambiente, estableceremos algunas estimaciones óptimas de la curvatura media de dicha subvariedad. Los resultados de esta conferencia son parte de nuestro trabajo conjunto de investigación con G. Pacelli Bessa y Jorge H.S. de Lira, de la Universidade Federal do Ceará en Fortaleza (Brasil).

Seminario 1ª Planta, IEMath-Gr

On the area growth of constant mean curvature graphs in \(\mathbb{E}(\kappa,\tau)\)-spaces.

Universidad Complutense de Madrid

In this talk we will discuss some estimates for the extrinsic area growth of constant mean curvature graphs in the simply-connected homogenous 3-manifolds \(\mathbb{E}(\kappa,\tau)\), whose isometry group has dimension at least 4. Such estimates follow from analyzing the height that geodesic balls reach in \(\mathbb{E}(\kappa,\tau)\), and will allow us to give sharp upper bounds for the extrinsic area growth of distinguished families of constant mean curvature surfaces such as invariant surfaces, complete graphs and \(k\)-noids. Finally we will focus on the study of entire minimal graphs in \(\mathbb{E}(\kappa,\tau)\) with \(\kappa<0\), for which sharper estimates are obtained by assuming restrictions on the height growth. This is a joint work with Barbara Nelli, which can be downloaded at

Seminario 1ª planta, IEMath

Uniqueness of the grim reaper cylinder

Universidad de Granada

In this article we prove that a connected, properly embedded translating soliton with uniformly bounded genus on compact sets which is \(C^1\)-asymptotic to two parallel planes outside a cylinder, must coincide with the grim reaper cylinder.

Seminario 1ª Planta, IEMath-GR

Integrable system methods for minimal surfaces

University of Leicester

Harmonic maps into appropriate spaces give rise to integrable systems; in particular, a spectral parameter can be introduced to investigate surfaces given by harmonicity. For example, surfaces with constant mean curvature have harmonic Gauss map. In the case of minimal surfaces the Gauss map does not determine the minimal surface uniquely but for surfaces with for non-vanishing mean curvature integrable system methods can been used to classify all CMC tori as meromorphic functions on the spectral curve. Recently, integrable systems have appeared in minimal surface theory, e.g., in the classification of planar domains or the classification of minimal annuli in S^2xR. To understand and exploit the link between classical tools of minimal surface theory and integrable system methods we propose to study instead of the Gauss map another harmonic map which includes the information of both the Gauss map and the support function of the minimal immersion. This is joint work with K. Moriya, Tsukuba.

Seminario 1ª Planta, IEMath-Gr

Hipersuperficies con curvatura media constante

UNAM, México DF.

Este trabajo comprende el estudio de hipersuperficies con curvatura media constante en la esfera unitaria. Utilizando ideas de varios autores, desarrollamos algunos resultados de caracterización basados en la imposición de condiciones sobre la segunda forma fundamental de estas hipersuperficies. Mencionaremos como estos resultados pueden ser extendidos para el caso en que $M$ está inmersa en el espacio euclidiano o en el espacio hiperbólico, es decir, cuando el espacio ambiente es una forma espacial. Este trabajo fue parte de mi tesis doctoral realizado en la Universidad Nacional Autónoma de México.

seminario 1ª Planta, IEMath-Gr

On the classical density topology and its various generalizations

University of Lodz

Firstly the idea of classical density topology is introduced. The properties of this topology are discussed in the aspect of separation axioms and the family of continuous functions. The first step of generalization is consideration density topology with respect to a fix sequence of positive reals tending to infinity. At this moment the idea of category aspect of the density topology is mentioned either. An approach of the density topologies with respect to the extension of Lebesgue measure is contained in the presentation. The last part concerns density topologies with respect to the sequences tending to zero. The results in this approach are relatively

seminario 1ª Planta, IEMath-Gr

Extremal domains in Hadamard manifolds

Universidad de Cádiz

In this talk we investigate the geometry and topology of f-extremal domains in a manifold with negative sectional curvature. A f-extremal domain is a domain that supports a positive solution to the overdetermined elliptic problem \begin{eqnarray} \label{1.3} \left\{ \begin{array}{llll} \Delta{u}+f(u)=0 \quad&\mathrm{in}\quad ~~\Omega,\\ u>0 \quad&\mathrm{in}\quad ~~\Omega,\\ u=0 \quad&\mathrm{on}\quad \partial\Omega,\\ \langle\nabla{u},\vec{v}\rangle_{M}=\alpha \quad&\mathrm{on}\quad \partial\Omega, \end{array} \right. \end{eqnarray}where \(\Omega\) is an open connected domain in a complete Hadamard \(n\)-manifold \((M,g)\) with boundary \(\partial\Omega\) of class \(C^{2}\), \(f\) is a given Lipschitz function, \(\langle\cdot,\cdot\rangle_{M}\) is the inner product on \(M\) induced by the metric \(g\), and \(\alpha\), \(\vec{v}\) the unit outward normal vector of the boundary \(\partial\Omega\) and \(\alpha\) a non-positive constant. We will show narrow properties of such domains in a Hadamard manifolds and characterize the boundary at infinity. We give an upper bound for the Hausdorff dimension of its boundary at infinity. Later, we focus on \(f\)-extremal domains in the Hyperbolic Space \(\mathbb H^n\). Symmetry and boundedness properties will be shown. Hence, we are able to prove the Berestycki-Caffarelli-Nirenberg Conjecture in \(\mathbb H^2\). Specifically: Let \(\Omega \subset \mathbb H^2\) a domain with properly embedded \(C^2\) connected boundary such that \(\mathbb H^2 \setminus \overline{\Omega}\) is connected. If there exists a (strictly) positive function \(u\in{C}^{2}(\Omega)\) that solves the equation \begin{eqnarray*} \left\{ \begin{array}{llll} \Delta{u}+f(u)=0 \quad&\mathrm{in}\quad ~~\Omega,\\ u>0 \quad&\mathrm{in}\quad ~~\Omega,\\ u=0 \quad&\mathrm{on}\quad \partial\Omega,\\ \langle\nabla{u},\vec{v}\rangle_{\mathbb H ^2}=\alpha \quad&\mathrm{on}\quad \partial\Omega, \end{array} \right. \end{eqnarray*} where \(f:(0,+\infty)\rightarrow\mathbb{R}\) satisfies \(f(t)\geq \lambda \, t\) for some constant \(\lambda\) satisfying \(\lambda> \frac{1}{4}\), then \(\Omega\) must be a geodesic ball and \(u\) radially symmetric. If time permits, we will generalize the above results to more general OEPs.

Seminario 1ª Planta, IEMath-Gr

Curvas, superficies e hipersuperficies de ángulo constante

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México.

En la geometría diferencial clásica existen muchas curvas y superficies que se definen en términos del ángulo que forman con una dirección distinguida. Por ejemplo, las curvas loxodrómicas, o líneas de rumbo, son aquellas curvas en la esfera que forman un ángulo constante con cada meridiano. En esta charla daremos un panorama del estudio de este tipo de objetos.

IEMath-gr, Seminario 1ª planta

Space of properly embedded minimal surfaces with fixed finite topology in \(\mathbb{H}^3\) (Part II)

Koç Üniversitesi

Our aim is to study the degree theory developed in the work of S. Alexakis and R. Mazzeo (2010) for maps sending a minimal surface to its asymptotic boundary.

Space of properly embedded minimal surfaces with fixed finite topology in \(\mathbb{H}^3\) (Part I).

Koç Üniversitesi

Our aim is to study the degree theory developed in the work of S. Alexakis and R. Mazzeo (2010) for maps sending a minimal surface to its asymptotic boundary.

A complete complex hypersurface in the ball of \(\mathbb{C}^N\)

Universidad de Liubliana

In 1977 P. Yang asked whether there exist complete immersed complex sub- manifolds \(\varphi: M^k → \mathbb{C}^N\) with bounded image. A positive answer is known for holomorphic curves \((k = 1)\) and partial answers are known for the case when \(k > 1\). In the talk we will describe how to construct a holomorphic function on the open unit ball \(\mathbb{B}_N\) of \(\mathbb{C}^N\) , \(N \geq 2\), whose real part is unbounded on every path in \(\mathbb{B}_N\) of finite length that ends on \(b\mathbb{B}_N\). This implies the existence of a complete, closed complex hypersurface in \(\mathbb{B}_N\), and gives a positive answer to Yang’s question in all dimensions \(k\), \(N\), \(1 \leq k < N\), by providing properly embedded complete complex manifolds.

Seminario 1ª Planta, IEMath-GR

Uniqueness of complete maximal surfaces in a Lorentzian Product \(-\mathbb{R}\times M\)

Universidade Federal do Ceará, Centro de Ciências e Tecnologia

We will present several results for maximal surfaces in a Lorentzian product manifold \(-\mathbb{R}\times M\). The main purpose is to characterize the slices as complete maximal surfaces satisfying a comparison between the growth of lenght of the gradient of the height function and norm of the shape operator and additional bound assumptions. Several Calabi-Bernstein results are also shown. Finally, examples of maximal surfaces in \(-\mathbb{R}\times M\) are explained to emphasize the necessity of the assumptions.

seminario 1ª Planta, IEMath-GR

The Newman-Penrose formalism for Riemannian 3-manifolds

Kavli IPMU (WPI), The University of Tokyo

We adapt the Newman-Penrose formalism in general relativity to the setting of three-dimensional Riemannian geometry, and prove the following results. Given a Riemannian 3-manifold without boundary and a smooth unit vector field \(X\) with geodesic flow, if an integral curve of \(X\) is hypersurface-orthogonal at a point, then it is so at every point along that curve. Furthermore, if \(X\) is complete, hypersurface-orthogonal, and satisfies \(Ric(X,X) \geq 0\), then the divergence of \(X\) must be nonnegative. As an app- lication, we show that when \(Ric > 0\), a geodesic and divergence-free unit vector field cannot be hypersurface-orthogonal; the case \(Ric < 0\) yields known results pertaining to unit length Killing vector fields. Along the way, we connect this formalism to some recent results from contact geometry, and mention how the Newman-Penrose formalism may be used to help classify scalar-flat Riemannian 3-manifolds.

Seminario 1ª Planta, IEMath-GR


End of Year London Geometry Conference

Londres (Reino Unido)

The aim of the London Geometry Conference is to bring together researchers working in the field of Geometric Analysis as well as other related areas. Registration is free and talks will take place at King's College London from Monday 14th December until Friday 18th. We would like to particularly encourage postdocs and graduate students to attend. Limited funds to support graduate students are available.

List of confirmed speakers:
  • Spyros Alexakis - University of Toronto
  • Lucas Ambrozio - Imperial College London
  • Otis Chodosh - Stanford University
  • Simon Donaldson - Stony Brook University / Imperial College London
  • Joel Fine - Free University of Brussels
  • Anna Fino - University of Turin
  • Mark Haskins - Imperial College London
  • Dominic Joyce - Oxford University
  • Dan Ketover - Princeton University
  • Ben Lambert - University of Konstanz
  • Yevgeny Liokumovich - University of Toronto
  • Laurent Mazet - Université Paris-Est - Créteil
  • Reto Müller - Queen Mary
  • Barbara Nelli - University of L’Aquila
  • Johannes Nordstrom - University of Bath
  • Magdalena Rodriguez - University of Granada
  • Melanie Rupflin - University of Oxford
  • Simon Salamon - King's College London
  • Andreas Savas-Halilaj - University of Hannover
  • Emanuele Spadaro - Max Planck Institute for Mathematics in the Science Leipzig

Geometric aspects on capillary problems and related topics

Granada (España)

The aim of this 4-day conference is to bring together active researchers on constant mean curvature/minimal surfaces and capillarity, or other condition on the boundary of the surface, and provide a panorama of the field through a variety of talks.

The meeting will cover various topics of the theory of CMC/minimal surfaces and capillarity, free boundary problems or other condition on the boundary of the surface. This includes surfaces in different ambient spaces (Euclidean space, space forms, homogeneous spaces,...) or surfaces with other type of prescribed mean curvature (sessile/pendant drops, translating solitons, rotating drops,...)

List of invited speakers:
  • Jaigyoung Choe (KIAS)
  • Ailana Fraser (British Columbia)
  • Miyuki Koiso (Kyushu)
  • Rabah Souam (IMJ-PRG, Paris)
  • Bennett Palmer (Idaho)

First joint meeting Brazil-Spain in Mathematics

Fortaleza (Ceará, Brazil)


The main goal of this meeting is strengthen partnerships and collaborations between researchers and institutions in Brazil and Spain.

This meeting is also part of the 60th anniversary celebrations of the Federal University of Ceará as well as of the 50 years of its Mathematics Graduate Program.

The meeting program includes both plenary talks and special sessions in a wide and comprehensive range of pure and applied Mathematics research subjects.

Proposals for special sessions must be submitted to the Scientific Committee and must contain a brief description of the subject as well as names and CVs of coordinators and speakers. Participation of researchers with active academic relations with Brazil or Spain is strongly recommended by the Scientific Committee.

Un siglo de Relatividad General y aún en la vanguardia

Palacio de la Madraza, Granada (España)

Lugar: Palacio de la Madraza. Días 23, 25 y 26 de noviembre a las 19.30 horas.
Este año 2015 se cumple ya un siglo de la publicación por Albert Einstein de su Teoría de la Relatividad General, en concreto el centenario será el próximo 25 de noviembre. Esta teoría científica y sus consecuencias han tenido a lo largo de los años un hondo calado en la sociedad a muy diversos niveles. La Academia de Ciencias Matemáticas, Físico-Químicas y Naturales de Granada y el Aula de Ciencia y Tecnología de la Universidad de Granada, desde su vocación de servicio a la sociedad quieren sumarse a esta conmemoración con un ciclo de conferencias abiertas al público en general. Cartel

Tercer Congreso de Jóvenes Investigadores de la RSME

Universidad de Murcia (España)

El próximo Congreso de Jóvenes Investigadores de la RSME, 3CJI, se celebrará en la Universidad de Murcia del 7 al 11 de septiembre de 2015. Se trata de la tercera edición de este congreso consolidado de la RSME, después de las exitosas ediciones previas que han tenido lugar en Soria en 2011 y en Sevilla en 2013.

XXIV International Fall Workshop on Geometry and Physics

Zaragoza (España)


The Fall Workshops on Geometry and Physics have been held yearly since 1992, and bring together Spanish and Portuguese geometers and physicists, along with an ever-increasing number of participants from outside the Iberian peninsula. The meetings aim to provide a forum for the exchange of ideas between researchers of different fields in Differential Geometry, Applied Mathematics and Physics. Some of the topics included are:

  • Classical theory of fields
  • Control theory
  • Integrable systems
  • Lie algebroids and mechanics
  • Lorentz geometry
  • Mechanics of continuous media
  • Poisson geometry
  • Quantum gravity
  • Quantum mechanics
  • Relativity
  • Riemannian and pseudo-Riemannian geometry
  • String theory
  • Supergravity and supersymmetry
  • Symplectic and contact geometry

The workshop will consist of two mini-courses, plenary talks given by invited speakers, contributed short talks and poster sessions. The mini-courses are

  • Valter Moretti (University of Trento). “Advanced Quantum Mechanics”.
  • Daniel Peralta (Instituto de Ciencias Matemáticas- ICMAT), "Fluid Mechanics: knots and links".

The plenary speakers will be announced soon.

Please, visit the web page for more instructions about how to submit an abstract for a short talk or poster presentation. In this web page you have more information about the workshop. Please note the important date *May 31st* for the submission of contributions and *July 31st* for the reduced registration fee (student 100 euros, normal 150 euros, in both cases, plus 20 euros if paid after July 31.)

Best regards,
The Organizing Committee
Silvia Vilariño Fernández
Raquel Villacampa
Verónica Martín
Eduardo Martínez

2º Corso Intensivo di Calcolo delle Variazioni

Catania (Italia)

  • Alberto Farina (Université de Picardie J.Verne - Amiens) "Proprietà qualitative ed aspetti geometrici delle soluzioni di PDEs non lineari."

    Abstract: Il corso è dedicato alla presentazione di alcuni risultati recenti riguardanti le proprietà qualitative e gli aspetti geometrici delle soluzioni di equazioni e sistemi di equazioni alle derivate parziali non lineari di tipo ellittico. I modelli considerati compaiono in modo naturale in numerosi problemi ed applicazioni : transizione di fase, ottimizzazione di forma, problemi inversi,... Dimostrero' alcuni risultati di classificazione e di rigidità in dominî non limitati (monotonia e simmetria delle soluzioni, problemi sovradeterminati alla Serrin in epigrafici e Congettura di De Giorgi). Ne discutero' l'ottimalità e presentero' alcuni problemi aperti.
  • Enrico Valdinoci (Weierstrass Institute for Applied Analysis and Stochastics - Berlin) "Problemi non-locali in analisi e geometria"

    Abstract: Il corso è dedicato alla presentazione di recenti problemi introdotti dal Laplaciano frazionario e operatori relativi che compaiono nella teoria delle equazioni differenziali alle derivate parziali, calcolo delle variazioni, analisi funzionale e probabilità. Il materiale trattato e i dettagli discussi saranno modulati in funzione del bagaglio culturale dei partecipati. Principalmente il corso tratterà i seguenti argomenti: Laplaciano frazionario, relazione tra la probabilità e le onde, trasformata di Fourier e problemi di estensione, funzioni armoniche frazionarie, problemi nella dislocazione dei cristalli, problemi in meccanica quantistica, problemi di rigidità e di simmetria, superficie minima non locale, problemi di frontiera libera.

Workshop on Geometric Flows

IEMath-GR, Granada (Spain)


Plenary speakers

Carlo Mantegazza, Oliver Schnürer, Felix Schulze, Natasa Sesum and Mu-Tao Wang


Ildefonso Castro, Francisco Martin, Vicente Miquel, Antonio Ros and Knut Smoczyk.

Minimal Surfaces, Overdermined Problems And Geometric Analysis

Santiago de Chile (Chile)

In this research school topics related to minimal surfaces, overdetermined problems and, more generally, geometric analysis will be studied. The main objective is to present to students and young researchers how tools from differential geometry and analysis of partial differential equations can be combined to obtain interesting, new results in both fields. Minimal surfaces theory and geometric analysis are very active topics in Brazil. These theories are quite advanced and expect to spur developments in new areas. For example Allen-Cahn equation which models two phases transitions is a counterpart of the minimal surface equation in semilinear elliptic partial differential equations. Since the resolution of the De Gorgi conjecture by the group of non linear PDEs in Chile there have been growing interest in geometric aspects of semilinear elliptic equations. Regularity theory of a minimizer of an elliptic functional is at the origin of the subject, beginning with the work of Modica. De Giorgi's conjecture is related to the Bernstein problem in minimal surface theory. Other topics like overdetermined problems show a deep interaction between differential geometry, variational problems and PDE. Some classification of the space of Alexandrov embedded domain has been recently establish using Weierstrass representation and minimal surfaces techniques. We expect to bring researchers and students in differential geometry from South America in view of promoting interaction with the Chilean PDE group.The activities of the school will include four mini-courses and several research talks. Although it is expected that participants should have working knowledge of basic aspects of differential geometry and analysis presentations will be accessible to students and, in general, to a public of non-experts in these topics. All expositors are leading experts on their subjects, which will give an opportunity to the participants to get acquainted with the basic techniques in the area and to be exposed to the current state of art.

Flowers & Friends in Frankfurt: A workshop on geometric analysis

Goethe Universität Frankfurt (Germany)



  • Fernando Codá Marques (IMPA)
  • Panagoita Daskalopoulos (Columbia)
  • Camillo de Lellis (Zürich)
  • Klans Ecker (FU Berlin)
  • Michael Eichmair (ETH)
  • Gerhard Huisken (Tübingen / MFO)
  • Tom Ilmanen (ETH)
  • Dan Knopf (Austin)
  • Erns Kuwert (Freiburg)
  • Tobias Lamm (KJT)
  • Rafe Mazzeo (Stanford)
  • Aaron Naber (Northwestern)
  • André Neves (Imperial College)
  • Frank Pacard (École Polytechnique Paris)
  • Felix Schulze (UCL)
  • Michael Struwe (ETH)
  • Peter Topping (Warwick)
  • Brian White (Stanford)
  • Burkhard Wilking (Münster)

Congreso de la RSME 2015

Granada (España)


En nombre del Comité Organizador es un placer invitarte a participar en el congreso de la Real Sociedad Matemática Española que se celebrará en la Facultad de Ciencias de la Universidad de Granada del 2 al 6 de Febrero de 2015. Este congreso es un magnífico colofón del cincuentenario de la constitución de los estudios de Matemáticas en la Universidad de Granada. Continuando con la tradición, el RSME-2015 permitirá conocer el desarrollo de la reciente investigación matemática española, así como estrechar lazos de colaboración entre distintos grupos de investigación de nuestro país. Además la asistencia al congreso permitirá también disfrutar de la ciudad de Granada, de sus plazas, sus monumentos, su arte hispano-musulmán, su gastronomía. Por todos estos motivos te animamos a participar en este evento.

En esta página web iréis encontrando toda la información relativa al congreso que os permitirá planificar vuestra participación en RSME-2015.

Esperamos verte en Granada.

Francisco Urbano Pérez-Aranda
Presidente del Comité Organizador