Are you looking for information about a lecture or an event? Here you can find all the past activities as well as specific information about a visitor or event.

Search
When? No restrictions
Year
Years: From to

Order
Type Talk:


Event:

YouTube Visit our channel

Talks

Compactness result for apparent horizont

Universidad de Granada

In this talk we will extend the Choi-Schoen [Invent. Math. 81 (1985) 387--394] compactness result for minimal surfaces to apparent horizons in the context of General Relativity. We also discuss some applications of the aforementioned result.

Seminario de Matemáticas. 1ª Planta, sección de Matemáticas.

Superficies con CMC en grupos de Lie métricos tridimensionales (II)

Universidad de Granada

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

On the geometry of certain surfaces in homogeneous 3-spaces

University "Alexandru Ioan Cuza" of Iasi

The geometry of surfaces in spaces of dimension 3, especially of the form M(c)^2 x R, has enriched in last years. An interesting problem studied in very recent papers consists of characterization and classification for constant angle surfaces in different 3-dimensional spaces belonging to the Thurston list. Such a surface is an orientable surface whose unit normal makes a constant angle with a fixed direction. When the ambient is of the form M^2 x R, the favored direction is R. It is proved that for a constant angle surface in E^3, S^2 x R or in H^2 x R, the projection of d/dt onto the tangent plane of the immersed surface, denoted by T, is a principal direction with the corresponding principal curvature identically zero. The main topic of this talk is to investigate surfaces in H^2 x R for which T is a principal direction.

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

Convex domains of Finsler and Riemannian manifolds

Università degli Studi di Bari

The aim of this talk is to present some results about the notions of convexity for a hypersurface in a Finsler manifold. The main theorem concerns the infinitesimal and local notions of convexity which are shown to be equivalent. Using a different approach, this result extends the classical Bishop\\\\\\\'s one for the Riemannian case to the Finsler setting. It also reduces the typical requirements of differentiability for the metric and it yields consequences on the multiplicity of connecting geodesics in the convex domain defined by the hypersurface.

Seminario de Matemáticas. 1ª Planta, sección de Matemáticas.

Superficies con CMC en grupos de Lie métricos tridimensionales (I)

Universidad de Granada

Esta es la primera de dos charlas sobre superficies con CMC en grupos de Lie de dimensión 3 dotados de una métrica invariante a izquierda. Estos espacios ambiente generalizan las geometrías de Thurston (salvo S^2 x R) que vienen siendo estudiadas en los últimos años. Dedicaremos la primera sesión a clasificar estos espacios y a entender sus propiedades más básicas. Las herramientas a desarrollar serán de utilidad para estudiar superficies con CMC en la segunda sesión, en la que prestaremos especial atención a los problemas de Hopf y Alexandrov en dichos ambientes.

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

Gluing infinitely many minimal surfaces together

Université François Rabelais

Gluing is a well established procedure to construct examples of minimal surfaces. In the past year I have been interested in developping tools to glue infinitely many minimal surfaces together. In this talk I will describe several families of minimal surfaces of theoretical interest that were constructed along the way. Then I will explain some of the technicalities involved in this kind of project, including a connection with some discrete analysis problems on graphs.

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

Generalized Weierstrass representations for higher dimensional pseudo-Riemannian manifolds

Imperial College London

Recent results allowed to generalized the classical Weierstrass representation of Riemannian surfaces to pluriminimal immersions of Kaehlerian manifold of arbitrary dimension. We show that it is possible to give Weierstrass representations in the very general context of pluri-conformal complex manifolds in arbitrary signature. Using moreover para-complex forms, we find analogous result for pseudo-Riemannian manifolds of split signature (p,p) and necessary and sufficient conditions on these forms for the immersion to be (para-)Kaehler and pluri-minimal.
It is worth pointing out that this framework is particular well adapted to the study of Lorentzian surfaces, which are naturally endowed with a para-complex structure. We consider then existence results for associated families, i.e one-parameter families of (para-)Kaehlerian immersions and give some examples.

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

La ecuación de Liouville con singularidades en el borde

Universidade Federal Fluminense

Clasificaremos las soluciones a la ecuación de Liouville en el semiplano superior con una cierta condición de Neumann sobre el eje real que genera singularidades. Concretamente, este problema describe métricas conformes de curvatura constante tales que el borde tiene curvatura geodésica constante (respectivamente c1 en R+ y c2 en R-). Trabajo conjunto con J.A. Gálvez y Pablo Mira.

Seminario de Matemáticas (1ª Planta, Sección de Matemáticas)

Degree Theory of Immersed Submanifolds

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

In arXiv:1010.1879 we construct an integer valued degree theory for compact, immersed hypersurfaces of constant curvature in general Riemannian manifolds, and we show how this degree theory may be used to prove existence results such hypersurfaces. Joint work with Harold Rosenberg.

Seminario de Matemáticas, 1ª Planta Sección de Matemáticas

Barrier techniques in the non-linear Plateau problem

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

We show how barrier techniques are used to solve the Plateau problem for general curvature functions in general manifolds.
arXiv:1008.3545

Seminario de Matemáticas, 1ª Planta Sección de Matemáticas

Doubling and desingularization constructions for minimal surfaces

University of Brown

I will discuss doubling constructions for the Clifford torus and the equatorial two-sphere in the round three-sphere. In doubling constructions minimal surfaces are constructed resembling two copies of the given minimal surface joined by many small catenoidal bridges. I will then discuss desingularization constructions where minimal surfaces are constructed by replacing the intersection curves of minimal two-surfaces in a Riemannian three-manifold with handles modeled after the singly periodic Scherk surfaces and then perturbing to minimality. Finally I will discuss some applications and open questions for closed embedded minimal surfaces in the three-sphere.

Seminario de Matemáticas, 1ª Planta

Homogeneous geodesics in homogeneous affine manifolds

Palacký University

It is well known that, in any homogeneous Riemannian manifold, there is at least one homogeneous geodesic through each point. For the pseudo-Riemannian case, even if we assume reductivity, this existence problem was open for a long time.
We use an affine approach to this problem. In [1], it was proved by a direct method that in dimension 2, any homogeneous affine manifold admits a homogeneous geodesic. In [2], it was proved by a differential-topological method that any homogeneous affine manifold admits a homogeneous geodesic through each point. As a corollary, we get the same result for homogeneous pseudo-Riemannian manifolds, either reductive or not.
[1] Dusek, Z., Kowalski, O., Vlasek, Z.: Homogeneous geodesics in homogeneous affine manifolds, Results in Math. (2009).
[2] Dusek, Z.: The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds, J. Geom. Phys. (2010).

Seminario de Matemáticas. 1ª Planta

Capillary minimal annuli

Korea Institute for Advanced Study

We first show that an immersed minimal annulus, with two planar boundary curves along which the surface meets these planes with constant contact angle, is part of the catenoid. Second, we prove that an embedded minimal annulus, which lies between two different concentric spheres and meets spheres perpendicularly along its boundaries, is part of a plane.

Seminario de Matemáticas, 1ª Planta.

Mean curvature flow of graphs in warped products

Universidad de Valencia

Let $M$ be a complete Riemannian manifold which either is compact or has a pole, and let $varphi$ be a positive smooth function on $M$. In the warped product $M times_varphi mathbb R$, we study the flow by the mean curvature of a locally Lipschitz continuous graph on $M$ and prove that the flow exists for all time and that the evolving hypersurface is $C^infty$ for $t>0$ and is a graph for all $t$. Moreover, under certain conditions, the flow has a well defined limit.
Joint work with A. Borisenko

Seminario de Matemáticas. 1ª Planta

Principles of Einstein-Finsler Gravity

Universitatea Alexandru Ioan Cuza

I will talk about recent interest to Einstein-Finsler gravity following some quantum gravity phenomenology, exact solutions and Ricci-Finsler flow theory. A survey oriented to both physicists and mathematicians will be presented.

Seminario de Matemáticas. 1ª Planta

Isotropic submanifolds

Université de Valenciennes

A tensor T is called isotropic if T(v,...,v) is independent of the choice of unit length vector v. The first result about Lagrangian submanifolds admitting an isotropic tensor was due to Naitoh who classified isotropic parallel Lagrangian submanifolds of complex space forms. Later results are due to Montiel, Urbano and Ejiri. In both cases the tensor T(X,Y,Z,W)=< h(X,Y),h(Z,W) >, where h is the second fundamental form of the Lagrangian immersion. The classification result in this case either gives the parallel hypersurfaces of Naitoh or a special class of H umbilical Lagrangian submanifolds. Of course the same question can also be asked for other geometric tensors like T(X,Y,Z,W)=<∇h(X,Y,Z),JW> or T(X,Y,Z,W,U,V)= <∇h(X,Y,Z),∇h (W,U,V)>. The first condition actually can be used to characterize the Whitney spheres, together with the parallel Lagrangian submanifolds. Whereas the second one is more difficult to treat and so far a classification of it is only known in dimension 3. Of course another possibility to generalize the previous results is to look at Lagrangian submanifolds of inefinite complex space forms. As a basic ingredient in the positive definite case which is the choice of a canonical frame based on the choice of e_1 as a vector on which a certain function on a compact set attains an absolute maximum breaks down in the indefinite case; new methods need to be developed. Moreover, the above developped techniques can also be used to study some submanifolds in affine differential geometry. The results in these lectures are based on work in progress with F. Dillen, H.Li and X. Wang for Lagrangian submanifolds and with O.Birembaux and M. Djoric for affine differential geometry.

Seminario de Matemáticas. 2ª Planta

Submanifolds in Hermitian symmetric spaces of rank 2

Kyungpook National University

Seminario de Matemáticas (2ª planta)

Spiraling minimal graphs

Purdue University

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Growth of solutions to the minimal surface equation

Purdue University

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Superficies mínimas en $\mathbb{H}^2\times\mathbb{R}$ con finales límite

Universidad de Granada

Para cada k ≥ 1, construimos superficies mínimas propiamente embebidas en H2xR con género cero, infinitos finales asintóticos a planos geodésicos verticales y k finales límite. Dichas superficies se obtienen por conjugación a partir de ciertos grafos de Jenkins-Serrin en H2xR.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Willmore tori in the 4-sphere

University of Leicester

Since the harmonicity of the conformal Gauss map characterizes Willmore surfaces, one can use harmonic map methods to obtain results for Willmore surfaces. In particular, we show that a Willmore torus with non-trivial normal bundle comes from holomorphic data by using an analogue of the delbar-sequence for harmonic maps into complex projective space. Moreover, the harmonic conformal Gauss map of a Willmore surface gives an associated family of flat connections, and thus allows to introduce a spectral parameter and to define a spectral curve. We will discuss both of these constructions, and the associated geometric transformations on Willmore surfaces.

Seminario de Matemáticas, 2ª Planta.

Una caracterización del cut locus, y del lugar singular de las ecuaciones de Hamilton-Jacobi

Universidad Autónoma de Madrid

Las soluciones de viscosidad de las ecuaciones de Hamilton-Jacobi admiten una interpretación geométrica como la función distancia a la frontera en una variedad de Finsler. En esta interpretación, el lugar singular de las soluciones es el cut locus desde la frontera. Recopilamos resultados sobre el lugar singular usando los dos puntos de vista. A continuación, estudiamos el lugar singular clasificando en distintas categorías todos sus puntos, excepto un conjunto de codimensión de Haussdorff 3. Finalmente, nos preguntamos si es posible caracterizar el lugar singular por dos propiedades del lugar singular, que expresamos diciendo que el lugar singular es un split locus, y que es balanced.

Seminario de Matemáticas, 2ª Planta.

Estimates for the first eigenvalue of minimal hypersurfaces in HmxR and Applications

Universidade Federal de Alagoas - Institut Fourier

In the first part of this talk we will show some lower estimates for the first eigenvalue of a minimal hypersurface immersed in H^mxR. As an application we prove that if a complete minimal surface in H^2xR has finite total extrinsic curvature, then such surface has finite Jacobi index. In the second part we will apply the method of Colding-Minicozzi to provide some upper estimates for the first eigenvalue of a complete Riemannian surfaces. We then apply this estimates for minimal surface in H3 and H^2xR. These results are part of a joint work with P. Bérard and Ph. Castillon.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Submanifolds, Isoperimetric Inequalities and Optimal Transportation

Université Montpellier II

We shall see how to prove isoperimetric inequalities on submanifolds of the Euclidean space, using mass transportation methods. We obtain a sharp weighted isoperimetric inequality and a nonsharp classical inequality. The proof relies on the description of a solution of the problem of Monge when the initial measure is supported in a submanifold and the final one supported in a linear subspace of the same dimension.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

H-surfaces in homogeneous 3-manifolds and H-spheres in Sol3.

University of Massachusetts, Amherst

I will go over recent work with Tinaglia on curvature estimates for H-surfaces (constant mean curvature surfaces) in homogeneous 3-manifolds and the classification of CMC-foliations of $R^3$. Next I will go over my recent proof that for each $H>0$, there exists a unique sphere $S_H$ in Sol3 with constant mean curvature H, which is based on previous work of Daniel and Mira.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Genus bounds for minimal surfaces arising from min-max construction

Universtät Zürich

In this talk I will give and prove genus bounds for closed embedded minimal surfaces in a closed 3-dimensional manifold constructed via min-max arguments. A stronger estimate was announced by Pitts and Rubistein but to my knowledge its proof has never been published. This proof follows ideas of Simon and uses an extension of a famous result of Meeks, Simon and Yau on the convergence of minimizing sequences of isotopic surfaces.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Superficies espaciales de curvatura media constante en espacio-tiempos de Robertson-Walker generalizados

Universidad de Córdoba

En espacio-tiempos de Robertson-Walker generalizados 3-dimensionales, estudiamos superficies espaciales completas de curvatura media constante (CMC) acotadas en dos sentidos distintos. En primer lugar, consideraremos superficies comprendidas entre dos slices, y en segundo lugar superficies con ángulo hiperbólico acotado (noción que generaliza la de imagen hiperbólica acotada en el espacio de Lorentz-Minkowski de dimensión 3). En ambos casos obtenemos resultados de no existencia y unicidad, que combinados permiten obtener todas las soluciones enteras y acotadas de la ecuación de superficies CMC en los espacio-tiempos en los que estamos trabajando.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

The geometry of minimal annuli in SxR

Université Marne la Vallée

I will present the deformation of Kilian-Schmidt in the context of minimal surfaces of SxR. The annuli remain embedded along the deformation. This work is related to the proof of the uniqueness of Clifford torus in 𝕊³ and Riemann examples in ℝ³.

Seminario de Matemáticas. 1ª Planta, sección de Matemáticas.

The asymptotic geometry of genus-g helicoids

Stanford University

We discuss the problem of classifying the asymptotic geometry of complete, properly embedded minimal surfaces in ℝ³ with finite topology. The techniques turn out to be dramatically different depending on whether there is one end or more than one. We focus on the former, as it has proven substantially more challenging - requiring a new theory due to Colding and Minicozzi. We outline their work and describe how it is used to prove the result - due to Meeks and Rosenberg - that the plane and helicoid are the only embedded minimal disks. In the process, we indicate how to generalize the argument to positive genus. Indeed, we conclude that such surfaces are asymptotic to a helicoid; justifying the name "genus-g helicoids". This is joint work with C. Breiner.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Superficies llanas completas con dos singularidades aisladas en el espacio hiperbólico

Universidad de Granada

Vamos a comentar algunos resultados de la teoría de superficies llanas en el 3-espacio hiperbólico, relacionados con nuestra representación conforme. En particular, como los ejemplos de revolución son los únicos completos con una singularidad aislada, mostraremos cómo construir y caracterizar nuevos ejemplos con dos singularidades.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Teoremas de comparación para la capacidad de convexos

Universidad de Granada

Una variedad riemanniana no compacta es hiperbólica si admite una función superarmónica positiva no constante. En caso contrario, decimos que es parabólica. La hiperbolicidad de una variedad riemanniana se puede caracterizar en términos de la capacidad de la siguiente forma: una variedad es hiperbólica si existe un compacto con capacidad positiva. En esta charla, demostraremos cotas para la capacidad de cuerpos convexos con curvatura media acotada en variedades cuyas curvaturas seccionales (o curvatura de Ricci) están también acotadas.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Nuevos dominios extremales para el primer valor propio del Laplaciano en toros planos

Université d'Aix-Marseille

Se demuestra la existencia de dominios no compactos y no triviales del espacio euclideo para los cuales la derivada normal de la primera función propia del Laplaciano (con condición de Dirichlet cero en el borde) es constante al borde. Estos dominios son obtenidos por perturbación de un cilindro y dan un contraejemplo a una conjectura de Berestycki-Caffarelli-Nirenberg.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Relaciones entre el borde causal y el borde conforme

Universidad de Córdoba

Actualmente, el borde conforme es el borde más usado en relatividad matemática. Sin embargo, diversos estudios han demostrado que dicha construcción tiene importantes limitaciones. Como consecuencia, el borde causal, cuya definición ha quedado totalmente justificada recientemente, aparece como una alternativa óptima. El seminario tiene los siguientes objetivos. Primero, explicar brevemente la construcción de ambos bordes. Segundo, ver qué condiciones de regularidad deben imponerse para asegurar que ambas construcciones coincidan, no sólo como conjuntos de puntos, sino como estructuras topológica y cronológica. Finalmente, destacaremos las consecuencias más importantes de este estudio.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Dominios de Calabi-Yau en 3-variedades

Universidad de Granada

Dado D un dominio en una 3-variedad y M una superficie abierta, se dice que D es un dominio de Calabi-Yau para M si no se puede construir una inmersión completa y propia de M en D que tenga curvatura media acotada. Nosotros veremos que si M tiene un final anular, entonces toda tres variedad admite un dominio de Calabi-Yau para M.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Events

Jornada de Geometría

Sala de Conferencias. Facultad de Ciencias

» 
Jornada organizada por el grupo de investigación Problemas variacionales en Geometría (FQM325)

Intived speakers

Acción formativa y plan de mejora docente del profesorado del Departamento de Geometría y Topología

Facultad de Ciencias. Universidad de Granada

» 
Dentro de esta acción formativa una parte consiste en una serie de charlas, cuyos horarios y aulas son:
  • Lunes 29 noviembre: 11-13 h. GeoGebra, Magdalena Rodríguez (Seminario de Matemáticas, 1ª planta) .
  • Miércoles 1 de diciembre, 18:30h. El programa Sketchpad. Francisco Milán (Aula de ordenadores O-8).
  • Jueves 2 de diciembre.: 11-13 h. Ideas para páginas webs. Francisco Torralbo & José M. Manzano . (Seminario de Matemáticas, 1ª planta).
  • Viernes 3 de diciembre: 11-13 h. Blogs y plataforma SWAD. Rafael López (Seminario de Matemáticas, 1ª planta).
Aquellos interesados en asistir pueden llevar su ordenador portátil para un mejor aprovechamiento de las charlas. En el caso de la charla de Francisco Milán se usarán los ordenadores de la Facultad.

International Meeting on Differential Geometry, Córdoba 2010

Universidad de Córdoba

» 
El evento International Meeting on Differential Geometry, Córdoba 2010 tendrá lugar en la Universidad de Córdoba del 15 al 17 de noviembre de 2010. Así mismo, el día 18 de noviembre se celebrará el ciclo de conferencias Una introducción a la Relatividad General desde un punto de vista Matemático. El evento está organizado por los profesores Alma L. Albujer Brotons, Magdalena Caballero Campos y Rafael M. Rubio Ruiz del Departamento de Matemáticas de la Universidad de Córdoba. El objetivo del encuentro es propiciar un intercambio científico entre investigadores de distintos grupos de investigación y dar a conocer la reciente apertura de una línea de investigación en geometría en la Universidad de Córdoba.

Seminarios de Análisis Geométrico

Aula C41 - Facultad de Ciencias, Universidad de Granada

» 
Horario
Jueves 16 Viernes 17 Lunes 20 Martes 21 Miércoles 22
10:00 — 12:00
Benôit Daniel
10:00 — 11:00
Benôit Daniel
10:00 — 11:00
Pablo Mira
10:00 — 11:00
Laurent Hauswirth
10:00 — 12:00
Uwe Abresch
11:30 — 13:30
Pablo Mira
11:30 — 13:30
Laurent Hauswirth
11:30 — 12:30
Uwe Abresch

Constant mean curvature surfaces in homogeneous manifolds
  • Benôit Daniel (Université Paris 12)
  • Laurent Hauswirth (Université Marne la Vallée)
  • Pablo Mira (Universidad Politécnica de Cartagena)
On Gromovs Compactness Theorem
  • Uwe Abresch (Ruhr-Universität Bochum)

RSME School Lluís Santaló 2010 "Geometric Analysis"

Granada (España)

» 
The Spanish Royal Mathematical Society (RSME) and the International University Menéndez-Pelayo (UIMP) organize the Mathematics School "Lluís Santaló" every year since 2002. Every year, the School is devoted to a specific topic. In the recent years, there is an increasing mathematical interest in the interaction between Differential Geometry and Partial Differential Equations, a branch of Mathematics called Geometric Analysis. This increasing interest is supported, for instance, by the large number of speakers in the next ICM in Hyderabad (India) working in the fleld of Geometric Analysis. Different problems coming from areas apparently far, have been solved by application of tools in Geometric Analysis: among others, we can mention the solution by R. Schoen and S. T. Yau of the positive mass conjecture, and the more recent positive answer by G. Perelman to the Poincaré conjecture.

Intived speakers

Lectures on Lorentzian Geometry

Granada (España)

»